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Abstract. We combine an integral equation formulation with a hodograph transformation to solve
self-similar problems describing the unconfined flow of groundwater with variable inlet conditions.
A class of new semi-analytical solutions is obtained for both rectilinear and radial flow geometries,
The solutions are in general agreement with those derived by Barenblatt, although there are some
discrepancies for the case of radial flow. The formulation presented provides additional analytical
insight, and for computational purposes is simpler than Barenblatt’s. In addition, the method proposed
can be successfully used for the solution of a host of other nonlinear problems that admit self-similarity.
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Nomenclature

parameter defined in (3) [L/T']
relative total discharge function for the case of constant head
_gravitational constant [L/T?]
hydraulic head [L]

dimensionless hydraulic head
permeability [L?]

hydraulic conductivity [L/T]

total discharge per unit width [1?/T]
relative total discharge function
radial distance [L]

time [T']
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* This paper, first prepared in 1991, was left incomplete due to the untimely passing of its first
author, Z.-X. Chen. It is dedicated to his memory.
** Author to whom correspondence should be addressed.
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v dimensionless total discharge

V  cumulative volume [L?]

w total discharge per unit head

x distance [L]

o exponent of time variation of inlet head
A dimensionless constant defined in (9)
w  viscosity [M/T L)

¢ similarity variable

p density [M/L]

¢ porosity

Introduction

Displacement processes in porous media are inherently unsteady, multi-dimensional
and nonlinear. Although the fundamental insight at the pore-level requires the use
of statistical physics methods (such as percolation and DLA, e.g., see Lenormand,
1990), the macroscopic description is often adequate with the use of partial dif-
ferential equations (particularly in homogeneous media and stable displacements). -
| Under certain conditions, additional simplifications are possible that render these :
problems tractable by relatively simple computational techniques. The reduction ,
‘ in dimensionality, obtained when the reservoir is long and narrow, is such a sim-

plification. More precisely, this is valid when the ratio Ry = %1—\/% is large,
where L and H denote the length and thickness of the reservoir, respectively, and
kv and kg are horizontal and vertical permeabilities (e.g. Lake, 1989 and Yortsos,
1991). ;

Such an approach has been taken in both the groundwater and the reservoir engi-
neering literatures. In the field of groundwater flow, the approximation is known as
the Dupuit assumption. Boussinesq (1904) was the first to use it in the description of
unconfined flow. The resulting equation is a form of a nonlinear diffusion equation,
with a diffusion coefficient that vanishes for a particular value of the dependent
variable. Similar equations were found to describe the isothermal, unsteady-state
flow of an ideal gas through porous media (Liebenzon, 1929). In the reservoir
engineering literature, the approximation is commonly known as the Vertical Equi-
librium (VE) approximation (the term vertical actually denoting transverse to flow)
(Lake, 1989). Yortsos (1991) has recently classified the various regimes that emerge
from the application of VE in displacement processes. Nonlinear diffusion equa-
tions also arise with the use of the traditional relative permeability and capillary
pressure formalisms to describe 1-D displacement problems.

In the case of homogeneous media, nonlinear diffusion equations typically
admit a similarity transformation. This further reduces the dimensionality of the
problem because it allows time, space and dependent variables to be combined in
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groups and to transform the partial differential equation into an ordinary differential
equation. Certain, but not all, initial and boundary conditions allow for a similarity
transformation to be applied. Typically, the result of a similarity transformation is a
two-point boundary value problem in a semi-infinite interval [0, oo}, the solution of
which requires in general the application of a shooting method. Some self-similar
problems for the unconfined flow of groundwater were formulated and solved in the
classical papers of Polubarinova—Kochina (1948, 1949) and Barenblatt (1952a-b,
1954). Many of these results are also summarized in the recent book by Barenblatt
et al. (1990). Unfortunately, except for some very special cases, the closed-form
solution of the resulting boundary value problem is not possible. Nonetheless,
the similarity reduction is very useful, because it allows for many interesting
results to be obtained, for example regarding the structure at the front, its speed of
propagation and some other nonlinear characteristics. Certain of these properties
are distinctly pertinent to nonlinear flows, and cannot be simply inferred from
linearization (Barenblatt, 1952a, 1952b).

Sometimes, a useful alternative to the shooting method is provided by recasting
the problem into an integral equation. This technique has been frequently used
in the area of nonlinear diffusion. Applications to porous media problems were
recently described by McWhorter (1990), McWhorter and Sunada (1990),and Chen
et al. (1990, 1991a, 1991b), who suggested the reduction of the problem into an -
integral equation based on some physical considerations. While straightforward, the
physical approach is somewhat restrictive. A careful analysis of the problem shows
that the reduction to an integral equation is possible for more general conditions,
by introducing a hodograph transformation. This method, which interchanges
dependent and independent variables, is not subject to the possible limitations of
the more intuitive approaches and provides an almost algorithmic scheme for the
solution of a variety of nonlinear problems. This paper presents an application
of this approach to the solution of the unconfined flow of groundwater in both
rectilinear and radial geometries. With an obvious change in notation, the approach
applies equally well to the isothermal flow of gas in porous media, as well as to a
variety of other nonlinear problems.

Rectilinear Flow

Consider a rectilinear, semi-infinite and horizontal porous medium, which rests
on an impermeable base and it is connected to a canal with a vertical boundary
(Figure 1). Initially, the hydraulic head of the groundwater in the porous medium
is assumed to be equal to zero, the pore space being occupied only by gas (air)
of negligible viscosity. At the boundary (z = 0), the hydraulic head in the canal
varies with time according to the power law

h(0, t) = ot® (1
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Fig. 1. Schematic of unconfined flow of groundwater.

where ¢ is a scaling parameter and « is aconstant in the range [ 1/3, oo] (see below
for the reason for this restriction). Use of the Dupuit assumption (see Bear, 1972,
Yortsos, 1991) allows for an one-dimensional description, where the hydraulic
head, h(z, t), satisfies the Boussinesq equation

oh O2h?
ot @ dz? @)
and we have denoted
k

20p°

Nonlinear, parabolic equations of this type arise in many applications (e.g. Aronson,
1985, van Duijn and Peletier, 1992) and they belong to the general class referred to
as the porous media equation. In the present problem, we are interested in solving
(2) subject to the boundary condition (1) and the following initial and boundary
conditions

h(z, 0)=0 )
h{co, t) = 0. (5)

Because of the power-law form of (1) a similarity transformation can be applied.
We introduce the dimensionless groups (Barenblatt, 1952a)

£=ayf 2t L ©®)

aotot!
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and

h

ot

H(& M) = (M
to transform (2) to the second-order ordinary differential equation

d?H? 1,dH

dfz —}-5 —d—é_—-—/\H_—_O, (®)
where we defined
A= (—1/2< A< ) ©)
=17 a .

Parameter \ is another measure of the variation of the hydraulic head at the
boundary. Equation (8) is to be solved subject to the conditions

H(0; A)=1 (10)
H(oco; A) = 0. 1n

The self-similar formulation (8)—(11) is originally due to Barenblatt (1952a—
b, 1954). He proceeded with a thorough analytical study of the integral curves
of (8) and has suggested an effective method for the calculation of H. Barenblatt
revealed many of the basic characteristics of this solution, particularly the finite
value of the velocity of the propagating front.

Recently, Chen et al. (1991b) were able to provide an alternative method for
the solution of (8) in the special case A = 0, based on an integral equation formu-
lation. Their approach was guided from physical considerations. Use of a careful
analysis, however, reveals that with the application of a hodograph transforma-
tion, the reduction to an integral equation is possible for arbitrary A. Hodograph
transformations have been successfully used in a variety of nonlinear problems
in homogeneous media (see, for example, Fokas and Yortsos, 1982, Shankar and
Yortsos, 1983 and Clarkson et al., 1989). This technique will be subsequently

- applied to this problem.

INTEGRAL EQUATION FORMULATION

By interchanging dependent and independent variables and by denoting & = £(H ),
problem (8)—(11) now reads

d [H] 1. 1, dE
d_ﬁ[;i};}—i_zg_i)‘]{d_ff_o (12
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with
(1) =0 (13)
and
£(0) = (and d—f- — o0, H— O) . (14)
dH

The essential condition for the validity of this transformation is that d¢ /d H does not
change sign in the interval of interest, so that the map ¢ « H remains one-to-one.
For the particular problem under consideration, the constraint is also physically
meaningful. Time variations different than (1), however, generally violate this
condition. To proceed with the solution, we next introduce the auxiliary variable
w, defined by

dw 1 d¢

1
ar =2t Mg (1)

- the physical meaning of which will be discussed shortly. In terms of w we have

d | H dw
di [:ZH] + ag = 0, (16)

which can be directly integrated. We get

dé H

= _ 17

dfd C 1 — W ’ ( )
where the constant C'; follows from boundary condition (14)

Ct = w(0). (18)

Equivalently, and without loss of generality, we may take w(0) = 0, as shown
below. Substitution in (17), followed with a further integration, and use of (13)
results in

H
) 8
e= || o(0) — wo(B) ¥ (1%

This expression for ¢ can be substituted in (15) to yield a differential equation
forw

dw 1A g 1, K
=il S0 -0 ¥ 200 e

(20)
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The latter can be directly integrated. In fact, the resulting double integral can be
conveniently rearranged to lead to the desired integral equation

B (H-p)p ﬁ)ﬁ
4/ ORI R / w(O (,6) df + Ca, @D
where
2

Equivalently, we may note thatw(0) is arbitrary, since it can be removed by defining
the new variable

v(H; A) = w—w(0), (23)

which, when substituted in (21) and (22), yields an equivalent integral equation
for v

[(1+2A)/ (ﬂ)dﬁ+H/ e } 24)

In terms of v, equation (19) reads

(25)

Thus, for any value of A, we have reduced the problem into one of solving the
integral equation (24). Equations (24) and (25) implicitly provide the solution to
the problem.

Before we proceed with the solution of (24), we shall comment on the behavior
near IT = 0. As can be easily shown by direct substitution, an expansion of v near
H = 0 shows the leading-order behavior

v~ H+ O(H?). (26)

This implies that all integrals in (24) and (25) are convergent, and that £ takes a
finite value & at H = 0. Equivalently stated, the hydraulic head becomes zero at
a finite location. This distinct property of nonlinear flow (which, for example, is
opposite to the infinite propagation speed of linear diffusion fronts) was discovered
by Barenblatt (1952a, 1952b) and theoretically proven by Barenblatt and Vishek
(1956) (see also recent developments in Aronson, 1985). Because of this property,
the self-similar solutions developed are also valid for a finite medium, as long as
the front has not reached the outer boundary.
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To solve the integral equation (24) we follow an iterative procedure using a test
function as an initial guess. Physical considerations can guide us to the selection
of a good initial estimate. To this order, we shall relate v to the physical quantity
of the relative total discharge function.

THE RELATIVE TOTAL DISCHARGE FUNCTION

Following Darcy’s law and the Dupuit assumption, the total discharge per unit
width, @, can be expressed as

oh
Q= -Kh, @7)
Oz
where K = kpg/y is the hydraulic conductivity. In terms of H and £, we obtain
(see also Barenblatt et al. (1990) but also note some typographical errors)

K [ 2 g
= —= j—(a+ Dt — 28
e LR ] % (28)
Combining (17), (18) and (23), we have
1 dH?
9o e 2
v TR (29)
thus, we can relate v to () by
b — Q (30)

K [2(a+ ]

It is evident from the above expression, that v represents a dimensionless fotal
discharge. Proceeding further, we can define the relative total discharge function,
R(H; ), by normalizing with the total discharge at the inlet, to obtain

R(H; \) = fv(—(]li,,/\i)) (A #-1/2) (31)
or
R(H; 2) GH: D)\ 21y, (32)

- 1 g2
(1+2)) f) 25 dB

In the special case A = 0, which corresponds to a constant hydraulic head at the inlet
(a = 0), Chen er al. (1991b) derived an integral equation involving the relative
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total discharge function, which in their paper they denoted by f, f(H) = R(H; 0).
These authors found that f satisfies the equation

fH) =1+ Ié—ﬁggi—— (33)
Iy #3548 |
and that
!
‘= QDz(O) JH f(ﬂﬂ) ‘ GY
where they used the dimensionless total discharge constant
Lo 1/2
0= | [ o] 3)

It can be readily shown that their results are contained in the present formulation
in the limit A = 0. Indeed, by using (32), we find the expression
. 49(H; 0
sy = 2UL0), (36)
fO v(B) d'B

which if substituted in (33)-(35), yields (24) and (25), as expected.
We can proceed with the use of the more physical variable R instead of v. For
example, we can rearrange (31) to read as

) ' ,32 1/2
H; )= (1 2,\12/—d R 37
and obtain, after some algebra, the equivalent integral equation

:(1+2/\)f0HRL(;5dﬁ+Hfg,mﬁ-ﬁ—)dﬂ
(1+2X) fy #5 4B

(38)
now expressed in terms of the physical quantity R. The equation for ¢ follows
directly

2

(39

' g
]WLMmM

(14 20) fy 75 45

Thus, by following the hodograph approach, we have arrived at an integral equatlon
-in terms of a physical variable. To solve (38) we note that, as expected, £(0; A) =
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and R(1; ) = 1. Thus, a reasonable initial guess for £ would be Ro(H; A) = H.

As will be shown below, the solution of the integral equation (38) converges rapidly
with this initial guess. Numerical results are presented in the next section.

SPECIAL CASE A = —1/2

The special case A = —1/2 is worth examining because it admits the exact solution
derived by Barenblatt ez al. (1972)
1-€2/8 (0<E<V)
H(E; —1/2)={ (40)
0 (€2 VB).

For this value we have v(1; —1/2) = 0. Because the total discharge at the inlet
vanishes, however, R becomes unbounded. In this case we must revert to equations
(24) and (25) for v, instead of attempting to solve for R (equations (38) and (39)). To

derive Barenblatt’s result with the present formulation, we note that for A = —1 /2,
Equation (24) yields
v 1 VB
— == | —/dg, 41
7= a )y v “b

which, using the change of variables,

v (42)

W= —

H

can be converted to the simpler equation

_1gt 4
v=7 | 20 (43)

By inspection, a solution to the latter is

w = %(I—H)‘/2 (44)
thus,
1 1/2
vzﬁH(l—H) 45)
and, from equation (25),
£ =2V/2(1- H)'2. (46)

This is identical to Barenblatt’s result (40).
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NUMERICAL RESULTS

Numerical calculations were carried out for various values of the parameter )\ in
the range —1/2 to 1. With the use of the initial guess, Ry, the iterative process for
solving (38) was found to converge quite rapidly. The results are in exact agreement
with those reported by Barenblatt (1954) and are illustrated in Figure 2 through 6.
In these Figures, &y is the dimensionless front location. The gradient at the inlet,
which is related to »(1) via (29), can also be related to the cumulative volume,
V(t)

o0 3 172 )
V(t) =/ $h(z, 1) dz = —¢ | Pt / H(E N e, @D
0 a1 0
Indeed, by integrating (8) we obtain
2 dH?

(48)

/OOOH({; A)dé =~

T+2X d |,
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or, in terms of v,

* He: A P S
PR Nde= [ 5588 = Tyt A) 49)

Thus, the quantity Vp = [~ H(& M) df can be regarded as the dimensionless
cumulative volume in the medium.

Curves of the relative discharge function for various values of A are illustrated
in Figure 2. All curves emanate from the origin and end at (1, 1). For A > 0, they
monotonically increase with increasing H. At A = 1/2, the solution coincides with
the diagonal. This can be verified by comparing with the exact results (Barenblatt
etal., 1972)

(30)

which imply a linear relationship between R and H. The curves for 0 < A < 1/2
are convex, those for 1/2 < A < 1 are concave. For A > 0, the maximum total
discharge occurs at the inlet. However, for A < 0, the relative total discharge
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function is not monotonic. The curves become convex with a maximum occurring
somewhere in the interval (0, 1) and they expand upwards as A decreases. When
A = —1/2, we find R = oo everywhere in the interval (0, 1) of the H axis.
Physically, this implies that, following instantaneous infiltration at ¢ = 0, there is
no further water flow into the porous medium (see also Figure 5).

Figure 3 shows plots of the function v(H; ). As predicted, the slopes at the
origin are finite. For —1/2 < A, the function is positive and does not change
sign, suggesting that the hodograph transformation is well posed. However, for
A = —1/2, v vanishes at H = 1 (in fact, its derivative is unbounded there), sig-
nalling ill-posedness. Indeed, for smaller values, A < —1/2, v changes sign in the
interval (0, 1), thus violating the monotonicity requirement of the transformation
and invalidating the approach taken in that region. Figure 4 shows dimensionless
hydraulic head profiles for various values of A. All curves terminate at the finite
location g, ahead of which the porous medium is at its initial state, The dependence
of {p on A is rather weak as shown in Figure 5. On the other hand, the dependence

of (—%{é—zﬂgzo = 2v) on A is stronger (Figure 5). As previously pointed out, for
A = —1/2 (a = —1/3), the total discharge at the inlet vanishes for ¢ > 0, and the
volume of groundwater within the porous medium, which was infiltrated instan-
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taneously at ¢ = 0, remains constant throughout. The dimensionless cumulative
volume, Vp, is plotted in Figure 6 in terms of the parameter A. It is shown to
decrease monotonically with increasing A.

Radial Flow

A similar procedure can also be applied for the solution of the problem in radial
geometry. Assuming axisymmetric unconfined Dupuit flow, the hydraulic head h

satisfies
@ = al i rahz (51)
ot~ e or| or|’

where 7 is the radial distance from the point source. For a similarity solution, we

consider the problem posed by Barenblatt (1952a-b, 1954). Starting at ¢ = 0, water
is injected into an initially dry porous medium, at a variable rate obeying the power
law:

Q) =%, (52)
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where 7 > 0 and # > —1. Again, constant injection rate corresponds to 3 = 0.
Appropriate initial and boundary conditions for this problem are

h(r, 0) =0
h(oco, 1) =0

while (52) can be expressed as

|: ahZ] T 8
r—F— = ——=1".
or | _, TK

To proceed, we introduce the dimensionless hydraulic head H

h
ot

s

H =

and the similarity variable

¢ = [“ﬁ'(ﬂ B 2)2] -

4aTtb+2

29

(33)
(54)

(35)

(56)

(57
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which reduce the above to the boundary value problem (Barenblatt, 1952a)

1 d | dF?*| 1_dH
gae |Tae | Fatag ~MO

with conditions

dm?

- = 1
4 Jleo

and
H{oo) =0,

where we defined

B

A= ——r.
B+2

(58)

(59)

(60)

(61)
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‘m (Barenblatt, 1952a)
As in the previous case, to solve (58) we will apply a hodograph transformation.

Equations (58)~(60) are converted to

(58)
4 [25HJ F o8- MH S =0 (62)
dH
i H
OIS 2 [E] =1 (63)
dH H=co
and
©0) £(0) = oo. (64)
: We, next, define the auxiliary variable w by taking
6y Qo 1o yegd€
?? AT (65)
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and substitute in Equation (62) to get !

d |2¢6H dw
— =2+ —==0. (66)
d :
d d_% dafn
Subsequent integration gives

a2l
=0 S

where

C1 = w(0) (68)

for the boundary condition

d¢ _
E“H:O - (69)

to be satisfied. Integrating (67) once we obtain

H
_ p
£ = (5 exp 2/0 o(0) — w(B) dg| . (70)
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Substituting (67) and (70) into (65) results into

dw 5|1 2\H? H B
ar = ‘2|27 oy —em) | P 4/0 S0y —w(3) |- (1)

A final integration yields the integral equation

Hl1 2)a?
— (2 -z
= 02/0 2 w(0)—-w(a) )

« B
exp[4/0 mdﬂ da + C3,

where

C3 = w(0). (73)
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Equation (72) is the radial flow analogue of (21). The other integration constant,
(>, can be determined from the boundary condition (63). We obtain

< (1] 2 a?
¢z = [/0 (5 B w(0) — w(a))

exp (4 /Oa W dﬂ) da] i . (74)

Substituting in (72) yields the final equation

I (3 - cdim) o 405w w(ﬁ) 6] da

w—-w(0) = (75)
J57 (4 - s exe [4 5 o ey 98] do
As before, we can take w(0) as zero or, equivalently, we may denote
[ =w—-w(0) (76)
to obtain the integral equation
_ 7 [ + 33(‘2: ] exp [—4 Iy f(—ﬁm'dﬁ] da -

7 [b+ R exp [-4 15 7 48] dor

This equation is the analogue of (38). As in the rectilinear case, f can be identified
with the relative total discharge function. From the solution of (77), the distribution
of the dimensionless hydraulic head H can be determined. Substituting (74) and
(76) in (70) gives

exp [~2 f4 76 a]
[+ 2 e [-4 05 4 4] do

In the special case A = 0, Equations (77) and (78) reduce to those of Chen et al.
(1991b)

~ [H exp {—4 Iy —%—5 dﬂ] do

(78)

]1/2'

= (79)
I exp[ 4f0°‘ i) dﬂ] do
and
dexp -4 [F -2 a5] 17
£ = e"p[ i) ] (80)

Joexp [—4 I T(%) dﬂ} da
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- other integration constant,
3). We obtain

74
_—~dp| d
;_5“_(’3_——ﬁ} : (75)
5 48] do
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These authors studied the solution of the problem at constant injection rate.

To solve Equation (77) using an iterative procedure we take fo(H) = 1 as the
initial guess, as in Chen et al. (1991b). Numerical calculations were carried out
for various values of A in the range —1 < A < 1. The relative total discharge
function is plotted for several values of A in Figures 7 and 8. Figure 9 shows the
dimensionless front location, &y, as a function of A. Corresponding dimensionless
hydraulic head profiles are shown in Figure 10, the dashed lines indicating the
results by Barenblatt (1954). As can be seen, some discrepancy exists between the
two solutions. This is in contrast to the rectilinear case, where the numerical results
from both works are in excellent agreement. We suspect computational limitations,
certainly greater in 1954 than today, as a possible source for this mismatch.

Conclusions

In this paper we have combined an integral equation formalism with a method of
change of variables, generally known as the hodograph transformation, to solve
a self-similar problem describing unsteady-state flow of groundwater in porous
media. New, semi-analytical solutions were derived in both rectilinear and radial
geometries for a family of problems, first formulated and investigated by Barenblatt.
In the rectilinear case, our results and those of Barenblatt’s coincide. In the radial
case, we expect that our results are more precise. In both cases, the solutions
developed here allow for additional analytical information and are considerably
easier than previous works. We note that the present approach can be successfully
applied to the solution of other nonlinear problems, including those in boundary
layer theory, that admit a self-similar description.
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